skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Roghanchi, Pedram"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The paper outlines the design, prototyping, and simulation processes involved in creating a compact radio frequency (RF) backscatter communication system, powered by Organic Photovoltaic (OPV) cells. This system is integral to a mine rescue operation, particularly useful in scenarios where miners are trapped due to accidents. In such situations, a rescue drone, equipped with a searchlight and the discussed communication system, takes the lead in the assisted escape mission for miners. The drone establishes duplex communication with the miners through a battery-free, wearable transponder device. Initial experiments employing a RF backscatter testbed - which utilizes both software-defined radios and OPV cells - were conducted. These preliminary tests were crucial for assessing the conditions necessary for successful backscatter communication, as well as for evaluating the energy-harvesting performance of the system. Findings from these experiments indicate that the device can operate battery-free, powered solely by OPV cells, even under low illuminance levels of less than 75 lux. In the pursuit of crafting the device in a compact form, a co-design initiative was launched. This effort focused on developing a meander dipole antenna in tandem with the OPV cells, targeting a resonant frequency of 912 MHz. Simulation results, obtained from ANSYS HFSS, revealed significant changes in antenna impedance and S parameters yet minimal impact on the radiation pattern of the antenna with the integration of the layered OPV structure. 
    more » « less